Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The high-pressure structure and stability of the calcic amphibole tremolite (Ca2Mg5Si8O22(OH)2) was investigated to ~40 GPa at 300 K by single-crystal X-ray diffraction using synchrotron radiation. C2/m symmetry tremolite displays a broader metastability range than previously studied clinoamphiboles, exhibiting no first-order phase transition up to 40 GPa. Axial parameter ratios a/b and a/c, in conjunction with finite strain versus normalized pressure trends, indicate that changes in compressional behavior occur at pressures of ~5 and ~20 GPa. An analysis of the finite strain trends, using third-order Birch-Murnaghan equations of state, resulted in bulk moduli (š¾) of 72(7), 77(2), and 61(1) GPa for the compressional regimes from 0-5 GPa (regime I), 5-20 GPa (II), and above 20 GPa (III), respectively, and accompanying pressure-derivatives of the bulk moduli (š¾ā²) of 8.6(42), 6.0(3), and 10.0(2). The results are consistent with first-principle theoretical calculations of tremolite elasticity. The axial compressibility ratios of tremolite, determined as š½a : š½b : š½c = 2.22:1.0:0.78 (regime I), 2.12:1.0:0.96 (II), and 1.03:1.0:0.75 (III), demonstrate a substantial reduction of the compressional anisotropy of tremolite at high pressures, which is a notable contrast with the increasingly anisotropic compressibility observed in the high-pressure polymorphs of the clinoamphibole grunerite. The shift in compression-regime at 5 GPa (I-II) transition is ascribed to stiffening along the crystallographic a-axis corresponding to closure of the vacant A-site in the structure, and a shift in the topology of the a-oriented surfaces of the structural I-beam from concave to convex. The II-III regime shift at 20 GPa corresponds to an increasing rate of compaction of the Ca-polyhedra and increased distortion of the Mg-octahedral sites, processes which dictate compaction in both high-pressure compression-regimes. Bond-valence analyses of the tremolite structure under pressure show dramatic overbonding of the Ca-cations (75% at 30 GPa), with significant Mg-cation overbonding as well (40%). These imply that tremoliteās notable metastability range hinges on the calcium cationās bonding environment. The 8-fold coordinated Ca-polyhedron accommodates significant compaction under pressure, while the geometry of the Ca-O polyhedron becomes increasingly regular and inhibits the reorientation of the tetrahedral chains that generate phase transitions observed in other clinoamphiboles. Peak/background ratio of diffraction data collected above 40 GPa and our equation of state determination of bulk moduli and compressibilities of tremolite in regime III, in concert with the results of our previous Raman study, suggest that C2/m tremolite may be approaching the limit of its metastability above 40 GPa. Our results have relevance for both the metastable compaction of tremolite during impact events, and for possible metastable persistence of tremolite within cold subduction zones within the Earth.more » « less
-
Abstract Seismic anisotropy constitutes a useful tool for imaging the structure along the plate interface in subduction zones, but the seismic properties of mafic blueschists, a common rock type in subduction zones, remain poorly constrained. We applied the technique of electron backscatter diffraction (EBSD) based petrofabric analysis to calculate the seismic anisotropies of 14 naturally deformed mafic blueschists at dry, ambient conditions. The ductilely deformed blueschists were collected from terranes with inferred peak PāT conditions applicable to subducting slabs at or near the plate interface in active subduction zones. Epidote blueschists display the greatestPwave anisotropy range (AVp ā¼7%ā20%), while lawsonite blueschist AVp ranges from ā¼2% to 10%.Swave anisotropies generate shear wave splitting delay times up to ā¼0.1 s over a thickness of 5 km. AVp magnitude increases with glaucophane abundance (from areal EBSD measurements), decreases with increasing epidote or lawsonite abundance, and is enhanced by glaucophane crystallographic preferred orientation (CPO) strength. Twoāphase rock recipe models provide further evidence of the primary role of glaucophane, epidote, and lawsonite in generating blueschist seismic anisotropy. The symmetry ofPwave velocity patterns reflects the deformationāinduced CPO type in glaucophaneāan effect previously observed for hornblende on amphibolitePwave anisotropy. The distinctive seismic properties that distinguish blueschist from other subduction zone rock types and the strong correlation between anisotropy magnitude/symmetry and glaucophane CPO suggest that seismic anisotropy may be a useful tool in mapping the extent and deformation of blueschists along the interface, and the blueschistāeclogite transition in active subduction zones.more » « less
-
null (Ed.)This paper introduces BioScript , a domain-specific language (DSL) for programmable biochemistry that executes on emerging microfluidic platforms. The goal of this research is to provide a simple, intuitive, and type-safe DSL that is accessible to life science practitioners. The novel feature of the language is its syntax, which aims to optimize human readability; the technical contribution of the paper is the BioScript type system. The type system ensures that certain types of errors, specific to biochemistry, do not occur, such as the interaction of chemicals that may be unsafe. Results are obtained using a custom-built compiler that implements the BioScript language and type system.more » « less
An official website of the United States government
